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Abstract

The Calkin-Wilf tree is a binary tree containing all rational numbers, first proposed in 2000 by N.

Calkin and H.S. Wilf. Though any term in the tree can be solved, all existing algorithms in the past 17

years used to solve the tree are recursive. While the basic method according to the definition is top-down

recursive, M. Newman in 2003 proved that the recursive function qi+1 = 1
2bqic−qi+1

also generates terms

on the tree. We however, in hope of finding a non-recursive algorithm, approached the Calkin-Wilf tree

with a brand-new method, considering the tree starting on the first term of the nth row. Through this

horizontal approach, we found two new algorithms, one better than the classical method under specific

circumstances, while the other is almost non-recursive, dependent only on a recursive An sequence and

solving a Linear Diophantine equation. Once the closed-form expression for the An sequence is found,

the algorithm will be completely non-recursive.
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1 Introduction

The Calkin-Wilf Tree is a binary tree with vertices corresponding 1-to-1 to the positive rational numbers,

first proposed by Calkin and Wilf [1]. The Calkin-Wilf Tree has a recursive formula proved by Newman, a

very counter-intuitive function qi+1 = 1
2bqic−qi+1 [3]. The classic algorithm generates terms starting from the

1st term q1 = 1
1 , going from top to bottom instead. We explored the Calkin-Wilf Tree through a different

approach, starting from the first term on every row, going from left to right without Newman’s recursive

function. We found two new algorithms through this approach.

1.1 Definitions

Definition 1.1. Root: the tree is rooted at the number 1
1 . In other words the first term is 1

1 .

Definition 1.2. Children: any node on the tree a
b has two children. The left child a

a+b and the right child

a+b
b . LC is short for left child and RC is short for right child.
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Definition 1.3. Numeration: The tree is labeled row by row from left to right. The root,11 , is defined

as the first term. For example, the second number(counted from left to right) of the second row is the 3rd

term. Similarly, on the third row we have 4th to 7th term, and the rest follows.

Definition 1.4. T (x): We use function T (x) to represent the xth term of the tree.

2 Basic Properties

Here are some well known and already proven basic properties of the Calkin-Wilf tree we find useful. They

all have existing proofs and are relatively trivial to prove with mathematical induction.

1. There are exactly 2n−1 fractions on the nth row.

2. (Position Lemma): ∀x ∈ N, ∃!i, j ∈ Z≥0, where x = 2i + j, x < 2i+1, and j < 2n. n = i+ 1 would be

the row number and j + 1 the position of the P (x) from left to right.

3. For any node T (x), its LC will be T (2x) and its RC T (2x+ 1)

4. For every node T (x) on the tree, its LC: T (2x) < 1 and its RC: T (2x+ 1) > 1.

5. 1 to 1: Every positive rational number only appears once in the tree. In other words, @a, b ∈ N, a 6= b,

such that T (a) = T (b)

6. Pseudo-Symmetry: The reciprocal of any fraction (except the root) of the tree will be on the same

row and are symmetrical about the middle axis in position. In other words, ∀T (2n−1 + m − 1) = p
q ,

T (2n−1 + 2n−1 + 1−m− 1) = T (2n−1 + (2n−1 −m)) = T (2n −m) = q
p

7. The fractions generated by the tree are all in lowest terms.

8. The first node on every row, T (2n−1) = 1
n

3 Rethinking the Calkin-Wilf tree

3.1 Motivations

Inspired by Candace Chiang’s idea in PROMYS 2015 of starting the tree at the 1
n ,[2](slightly mentioned in

their unpublished paper), we started our following explorations.

We start plotting the tree starting on the first term of the nth row, with the fraction 1
n , according to

lemma 8. For other terms, each time we move up along the tree one term, such as 1
n−2 to 1

n−3 , and then

moving down, giving us 4 new terms.

3



Since all the fractions are in the form of An−B
Cn−D , we extract the coefficients on the nth row as sequences

of m.

Definition 3.1. An(m), Bn(m), Cn(m), Dn(m): Writing the node T (2n−1 + m − 1) in the form An−B
Cn−D ,

An(m), Bn(m), Cn(m), and Dn(m) are the sequences of coefficients for the mth node on the nth row.

Definition 3.2. tn(m): We define tn(m) to be the mth node starting from the left on the nth row.

3.2 Pseudo Self-Similar Nodes

We discovered that the previous method of generating An−B
Cn−D terms was rather tedious. The tree could be

extended vertically by using only 2 rows rather than the log2(m).

There is a pseudo self-similar property of the tree when taking the horizontal approach.

Lemma 3.0.1. (Pseudo Self-Similarity):

By substituting the ns of Ann−Bn

Cnn−Dn
with (n− 1), we get the equation

An(m)× (n− 1)−Bn(m)

Cn(m)× (n− 1)−Dn(m)
=
An−1(m)× n−Bn−1(m)

Cn−1(m)× n−Dn−1(m)
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⇒



An−1(m) = An(m),

Cn−1(m) = Cn(m)

Bn−1(m) = An(m) +Bn(m),

Dn−1(m) = Cn(m) +Dn(m)

Lemma 3.0.2. (LC and RCs:)

And the nth row is made out of LCs and RCs of the (n− 1)th row.

For LCs: 

An(2m− 1) = An−1(m),

Cn(2m− 1) = Cn−1(m) +An−1(m)

Bn(2m− 1) = Bn−1(m),

Dn(2m− 1) = Dn−1(m) +Bn−1(m)

For RCs: 

An(2m) = An−1(m) + Cn−1(m),

Cn(2m) = Cn−1(m)

Bn(2m) = Bn−1(m) +Dn−1(m),

Dn(2m) = Dn−1(m)

3.3 Recursive Algorithm Based on Pseudo Self-Similarity

Combining lemma 3.0.1 and 3.0.2, we get two set of equations.

The first set, for LCs, is



An(2m− 1) = An(m),

Cn(2m− 1) = Cn(m) +An(m)

Bn(2m− 1) = An(m) +Bn(m),

Dn(2m− 1) = Cn(m) +Dn(m) +An(m) +Bn(m)
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The second set, for RCs, is



An(2m) = An(m) + Cn(m),

Cn(2m) = Cn(m)

Bn(2m) = An(m) +Bn(m) + Cn(m) +Dn(m),

Dn(2m) = Cn(m) +Dn(m)

It is trivial to prove that the operations 2m and 2m − 1 are sufficient to bring m = 1 to any Natural

Number. Thus for any wanted m we can generate tn(m) using these two sets of equations recursively.

One may question the complexity of this algorithm compared to the traditional recursive algorithm

starting at the root. The exact complexity is unclear, but for small m’s, meaning those near the left side of

the tree compared to the total number of nodes on that layer, this algorithm will definitely be more efficient.

Also, applying the Pseudo-Symmetry lemma, basic property 6, the reciprocal of any fraction of the tree

will be on the same row and are symmetrical about the middle axis in position. Thus we can find any term

near the right side of the tree with equivalent simplicity.

To get an idea of when to use this algorithm, we give a crude approximation of calculating efforts.

Assume the calculation of each addition is 1 unit time, 1u.

Then for the traditional algorithm, the LC and RC of p
q both take 1u, since they both need to calculate

p+ q. So in order to find T (2n−1 +m− 1), we need approximately (n− 1)u’s.

With our horizontal Algorithm, we need 3u’s to generate tn(2x) and tn(2x − 1) from tn(x). In other

words, for a tn(m), 2i < m ≤ 2i+1, we need 3(i+ 1) = 3dlog2meu’s.

In conclusion, the traditional algorithm is only dependent on n and our algorithm is only dependent on

m.

Let n− 1 > 3dlog2meu,

n− 1

3
> log2m

m < 2
n−1
3

So when m < 2
n−1
3 our horizontal algorithm should be more efficient.
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4 Solving the Calkin-Wilf Tree Non-Recursively

4.1 Horizontal Properties

Taking the horizontal representation of An−B
Cn−D , we find some interesting properties that help us to generate

any node non-recursively (compared to all existing methods are recursive algorithms).

The properties:

1.


An(m+ 1) = Cn(m)

Bn(m+ 1) = Dn(m)

2.


An(2m− 1) = An(m)

Bn(2m− 1) = An(m) +Bn(m)

3.


An(2m) = An(2m− 1) +An(2m+ 1)

Bn(2m) = Bn(2m− 1) +Bn(2m+ 1)

4. An(m)Dn(m)−Bn(m)Cn(m) = 1

Now proving the properties:

Proposition 4.1. Property 1:


An(m+ 1) = Cn(m)

Bn(m+ 1) = Dn(m)

Proof. We give our proof by strong induction.

Base Case i = 1.

For all m ≤ 21

Cn(1) = 1 = An(2)

Dn(1) = 0 = Bn(2)

The lemma holds true for the base case.

Induction Assume the lemma holds true for all tn(m), m ≤ 2i, i ∈ N

7



We first extend our lemma to the (n− 1)th row. According to lemma 3.0.1,



An−1(m) = An(m),

Cn−1(m) = Cn(m)

Bn−1(m) = An(m) +Bn(m),

Dn−1(m) = Cn(m) +Dn(m)

By our induction hypothesis, An(m + 1) = Cn(m). Substituting in An−1(m) = An(m) and Cn−1(m) =

Cn(m), we get An−1(m+ 1) = Cn−1(m).

Then, we consider Bn−1(m + 1) = An(m + 1) + Bn(m + 1). Substituting in our induction hypothesis

An(m+ 1) = Cn(m) and Bn(m+ 1) = Dn(m), we get Bn−1(m+ 1) = Cn(m) +Dn(m) = Dn−1(m)

So now the lemma also holds true for all tn−1(m), m ≤ 2i.

Now then choose a x, ∀x ∈ N, such that 2i ≤ x < 2i+1.

Consider tn(x) and tn(x+ 1). There are two cases, x ≡ 1 (mod 2) or x ≡ 0 (mod 2).

Case 1: x ≡ 1 (mod 2)

Let m = x+1
2

Since x is odd, tn(x) is a LC of the (n− 1) row, namely LC of the tn−1(x+1
2 = m).

So the tn(x+ 1) is the RC of tn−1(m).

According to the LC and RC lemma 3.0.2, An(x+1) = An−1(m)+Cn−1(m) = Cn(x), and Bn(x+1) =

Bn−1(m) +Dn−1(m) = Dn(x). So the lemma holds true for this case.

Case 2: x ≡ 0 (mod 2)

Let m = x
2

Since x is even, tn(x) is a RC of the (n− 1) row, namely RC of the tn−1(x
2 = m)

So the tn(x+ 1) is the LC of tn−1(m+ 1).

We already proved that the lemma also holds true for the first 2i terms of the n−1 row. So An−1(m+

1) = Cn−1(m) and Bn−1(m+ 1) = Dn−1(m).

According to the LC and RC lemma 3.0.2,

An(x+ 1) = An−1(m+ 1)
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Bn(x+ 1) = Bn−1(m+ 1)

Cn(x) = Cn−1(m)

Dn(x) = Dn−1(m)

⇒


An(x+ 1) = Cn(x),

Bn(x+ 1) = Dn(x)

The lemma also holds true for this case.

So if the lemma holds true for all tn(m), m ≤ 2i, i ∈ N, it also holds true for all 2i ≤ x < 2i+1.

Thus applying strong induction, the lemma is valid for all m ∈ N

Proposition 4.2. Property 2:


An(2m− 1) = An(m)

Bn(2m− 1) = An(m) +Bn(m)

Proof. By the Pseudo Self-Similarity property, 3.0.1, we have


An−1(m) = An(m)

Bn−1(m) = An(m) +Bn(m)

And by the LC and RC lemma, 3.0.2, we have


An−1(m) = An(2m− 1)

Bn−1(m) = Bn(2m− 1)

Combining the two set of equations, we get


An(2m− 1) = An(m)

Bn(2m− 1) = An(m) +Bn(m)

Which is our property 2.

Proposition 4.3. Property 3:


An(2m) = An(2m− 1) +An(2m+ 1)

Bn(2m) = Bn(2m− 1) +Bn(2m+ 1)

Proof. By 2m we know that tn(2m) is a RC.
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By the LC and RC lemma, 3.0.2, we have



An(2m) = An−1(m) + Cn−1(m)

Bn(2m) = Bn−1(m) +Dn−1(m)

Cn(2m) = Cn−1(m)

Dn(2m) = Dn−1(m)

Plug equations 3 and 4 into 1 and 2, we get

1


An(2m) = An−1(m) + Cn(2m)

Bn(2m) = Bn−1(m) +Dn(2m)

And by the Pseudo Self-Similarity Property, 3.0.1, combined with Property 2, 4.2, we have

2


An−1(m) = An(m) = An(2m− 1)

Bn−1(m) = An(m) +Bn(m) = Bn(2m− 1)

Combining 1 with 2 and also Property 1, 4.1, we have


An(2m) = An(2m− 1) + Cn(2m) = An(2m− 1) +An(2m+ 1)

Bn(2m) = Bn(2m− 1) +Dn(2m) = Bn(2m− 1) +Bn(2m+ 1)

Which is our Property 3.

Proposition 4.4. Property 4: An(m)Dn(m)−Bn(m)Cn(m) = 1

Proof. We give our proof by strong induction.

Base Case i = 1.

For all m ≤ 20

An(1)Dn(1)−Bn(1)Cn(1) = 0× 0− (−1)× 1 = 1

The lemma holds true for the base case.

Induction Assume the lemma holds true for all tn(m), m ≤ 2i, i ∈ N
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We first extend our lemma to the (n−1)th row. According to lemma 3.0.1,



An−1(m) = An(m),

Cn−1(m) = Cn(m)

Bn−1(m) = An(m) +Bn(m),

Dn−1(m) = Cn(m) +Dn(m)

An−1(m)Dn−1(m)−Bn−1(m)Cn−1(m)

=An(m)(Cn(m) +Dn(m))− (An(m) +Bn(m))Cn(m)

=An(m)Dn(m)−Bn(m)Cn(m)

=1

So the lemma also holds true for all tn−1(m), m ≤ 2i.

Now then choose a x, ∀x ∈ N, such that 2i ≤ x < 2i+1.

Consider tn(x). There are two cases, x ≡ 1 (mod 2) or x ≡ 0 mod 2.

Case 1: x ≡ 1 (mod 2)

Let m = x+1
2

Since x is odd, tn(x) is a LC of the (n− 1) row, namely LC of the tn−1(x+1
2 = m).

According to the LC and RC lemma 3.0.2,



An(x) = An−1(m),

Cn(x) = Cn−1(m) +An−1(m)

Bn(x) = Bn−1(m),

Dn(x) = Dn−1(m) +Bn−1(m)

An(x)Dn(x)−Bn(x)Cn(x)

=An−1(m)(Cn−1(m) +Dn−1(m))− (An−1(m) +Bn−1(m))Cn−1(m)

=An−1(m)Dn−1(m)−Bn−1(m)Cn−1(m)

=1

(According to our generalization to the (n− 1)th row.)

So the lemma holds true for this case.

Case 2: x ≡ 0 (mod 2)
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Let m = x
2

Since x is even, tn(x) is a RC of the (n− 1) row, namely RC of the tn−1(x
2 = m)

According to the LC and RC lemma 3.0.2,



An(x) = An−1(m) + Cn−1(m),

Cn(x) = Cn−1(m)

Bn(x) = Bn−1(m) +Dn−1(m),

Dn(x) = Dn−1(m)

An(x)Dn(x)−Bn(x)Cn(x)

=(An−1(m) + Cn−1(m))Dn−1(m)− (Bn−1(m) +Dn−1(m))Cn−1(m)

=An−1(m)Dn−1(m)−Bn−1(m)Cn−1(m)

=1

(According to our generalization to the (n− 1)th row.)

So the lemma also holds true for this case.

So if the lemma holds true for all tn(m), m ≤ 2i, i ∈ N, it also holds true for all 2i ≤ x < 2i+1.

Thus applying strong induction, the lemma is valid for all m ∈ N

4.2 Finding An(m)

An(m) is rather annoying to find. As we have found in the properties, we can give a set of recursive formulas

by properties 2 and 3:



An(2m− 1) = An(m)

An(2m) = An(2m− 1) +An(2m+ 1) = An(m) +An(m+ 1)

An(1) = 0

An(2) = 1

It is trivial to prove that these set of equations are enough to generate every An term. However, the

existence of a closed form is still unknown. We at least failed to find any.

We solve for the exact value of An(m) for a given m by partitioning the An(m) into a sequence of

An(m) = c1An(21) + c2An(22) + ...+ ciAn(2i)

The proof for the feasibility of such a partition for any An(m) is trivial by strong induction.
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And the reason that we partition An(m) into An(2i)’s is the following property

Lemma 4.0.1. An(2i) = i,∀i ∈ N

Proof. First, we should know that An(2i + 1), ∀i ∈ N. This is trivial to prove by induction and Property 2,

4.2, that An(2m− 1) = An(m).

Then, applying induction.

Base Case i = 1

An(21) = 1

Induction Assume An(2i) = i

Consider the term An(2i+1)

By Property 3, 4.3, and Property 2, 4.2

An(2i+1) =An(2i+1 − 1) +An(2i+1 + 1)

=An(2i) + 1

=i+ 1

Thus by induction, finishing the proof.

So, An(m) = c1An(21) + c2An(22) + ...+ ciAn(2i) is equvilent to

An(m) = c1 × 1 + c2 × 2 + ...+ ci × i

4.3 Non-Recurssive Algorithm based on known An(m)

Now, by Property 4, 4.4, we have a linear Diophantine equation An(m)Dn(m)−Bn(m)Cn(m) = 1. Slightly

tweaking it with Property 1, 4.1, we have

An(m)Dn(m)−An(m+ 1)Bn(m) = 1

When we have An(m) and An(m + 1), we can already produce a unlimited series of possible solutions

for Bn(m) and Dn(m) by various well known methods, such as the Magic Box or a variation of Euclidean

Algorithm. The solutions will be in the form An(m)(Dn(m)+kAn(m+1))−An(m+1)(Bn(m)+kAn(m)) = 1,

∀k ∈ Z
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Definition 4.1. (X(m), Y (m)): Denote the least non-negative integer pair of (x, y) solutions for An(m)x−

An(m+ 1)y = 1 as (X(m), Y (m)).

We found that Dn(m) and Bn(m) are not random solutions to the linear diophantine equation. Instead,
Dn(m) = X(m) + kCn(m)

Bn(m) = Y (m) + kAn(m)

, where k = dlog2me − 1 and m ≥ 2. In other words, with An(m) and

Cn(m) = An(m+ 1), it is enough to solve the entire tn(m).

Now to prove the Theorem.

Theorem 4.1.


Dn(m) = X(m) + kCn(m)

Bn(m) = Y (m) + kAn(m)

, where k = dlog2me − 1 and m ≥ 2

Proof. We give our proof by strong induction. Let 2i < m ≤ 2i+1

Base Case i = 0.

Only m = 2 satisfies 20 < m ≤ 21

An(2) = 1, Cn(2) = 1,

Solving An(2)X(2)− Cn(2)Y (2) = X(2)− Y (2) = 1

(X(2), Y (2)) = (1, 0)

And since Dn(2) = 1, Bn(2) = 0, k = dlog2 2e − 1 = 0

So


Dn(2) = 1 = X(2) + kCn(2)

Bn(2) = 0 = Y (2) + kAn(2)

The Theorem is valid for i = 0

Induction Assume the theorem holds true for all m, 2i < m ≤ 2i+1

Which k = dlog2me − 1 = i+ 1− 1 = i

Now then choose a x, ∀x ∈ N, such that 2i < x ≤ 2i+1.

Note that:

dlog2 xe − 1 = i+ 1

First we want to solve a useful relationship. Say αX − βY = 1, (X,Y ) the minimum non-negative pair

of solutions as the definition 4.1.

We know that α(X + Y )− (β + α)Y = 1
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Since (X,Y ) is the minimum non-negative pair, at least one of the two Y − α < 0 and X − β < 0 hold

true. And because the signs of any (x,y)solution to ax − by = 1 ,with a, b ∈ N, must be the same, both

Y − α < 0 and X − β < 0.

And thus (X + Y )− 1× (β + α) < 0, the pair (X + Y, Y ) is the minimum non-negative solution to the

new αx− (β + α)y = 1 equation. 1

An analogous relationship would be the pair (X,Y + X) is the minimum non-negative solution to the

new (α+ β)x− βy = 1 equation. 2

Now moving back to the subject, consider tn(x). According to the Recursive Algorithm Based on Pseudo

Self-Similarity, 3.3, we can generate two terms with tn(x), namely tn(2x− 1) and tn(2x).

tn(2x− 1) By 3.3, we have



An(2x− 1) = An(x),

Cn(2x− 1) = Cn(x) +An(x)

Bn(2x− 1) = An(x) +Bn(x),

Dn(2x− 1) = Cn(x) +Dn(x) +An(x) +Bn(x)

Plugging it in:

An(2x− 1)Dn(2x− 1)− Cn(2x− 1)Bn(2x− 1)

=An(x)(Cn(x) +Dn(x) +An(x) +Bn(x))− (Cn(x) +An(x))(An(x) +Bn(x)) = 1

Based on the relationship 1 we proved, X(2x− 1) = X(x) + Y (x), Y (2x− 1) = Y (x)

We know by the Induction Hypothesis that X(x) = Dn(x)− iCn(x) and Y (x) = Bn(x)− iAn(x).
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So verifying the theorem:

Dn(2x− 1)−X(2x− 1) =(Cn(x) +Dn(x) +An(x) +Bn(x))− (Dn(x)− iCn(x) +Bn(x)− iAn(x))

=(i+ 1)(An(x) + Cn(x))

=(i+ 1)Cn(2x− 1)

=(dlog2 xe − 1)Cn(2x− 1)

Bn(2x− 1)− Y (2x− 1) =(An(x) +Bn(x))− (Bn(x)− iAn(x))

=(i+ 1)An(x)

=(i+ 1)An(2x− 1)

=(dlog2 xe − 1)An(2x− 1)

The theorem holds for tn(2x− 1).

Case 2: tn(2x) By 3.3, we have



An(2x) = An(x) + Cn(x),

Cn(2x) = Cn(x)

Bn(2x) = An(x) +Bn(x) + Cn(x) +Dn(x),

Dn(2x) = Cn(x) +Dn(x)

Plugging it in:

An(2x)Dn(2x)− Cn(2x)Bn(2x)

=(An(m) + Cn(m))(Cn(x) +Dn(x))− Cn(x)(An(x) +Bn(x) + Cn(x) +Dn(x)) = 1

Based on the relationship 2 we proved, X(2x) = X(x), Y (2x− 1) = Y (x) +X(x)

We know by the Induction Hypothesis that X(x) = Dn(x)− iCn(x) and Y (x) = Bn(x)− iAn(x).
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So verifying the theorem:

Dn(2x)−X(2x) =(Cn(x) +Dn(x))− (Dn(x)− iCn(x))

=(i+ 1)Cn(x)

=(i+ 1)Cn(2x)

=(dlog2 xe − 1)Cn(2x)

Bn(2x− 1)− Y (2x− 1) =(An(x) +Bn(x) + Cn(x) +Dn(x))− (Dn(x)− iCn(x) +Bn(x)− iAn(x))

=(i+ 1)(An(x) + Cn(x))

=(i+ 1)An(2x)

=(dlog2 xe − 1)An(2x)

The theorem also holds for tn(2x).

It is trivial to prove that the two operations (2x) and (2x− 1) can cover all numbers of (2i+1, 2i+2] with

(2i, 2i+1].

Thus applying strong induction, the Theorem holds for all i.

5 Conjectures and Observations

• (Closed Form Conjecture) There exists a closed form solution to



An(2m− 1) = An(m)

An(2m) = An(2m− 1) +An(2m+ 1) = An(m) +An(m+ 1)

An(1) = 0

An(2) = 1

• (The Partition Conjecture) Any term An(m) can be partitioned into xAn(2i) + yAn(2i+1), where

x = An(α), y = An(β), α, β ≤ 2dlog2 me−2. The actual pattern is more orderly yet harder to formulate.

• (An Improved An(m) Equation) An(2i − k) = i×An(k + 2)−Bn(k + 2)
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